Ahmed Alaa, Zeshan Hussain, David Sontag
(2023).
Conformalized Unconditional Quantile Regression.
Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS).
Zeshan Hussain, Rahul G Krishnan, David Sontag
(2021).
Neural Pharmacodynamic State Space Modeling.
Proceedings of the Thirty-Eighth International Conference on Machine Learning (ICML).
Michael Oberst, Fredrik D. Johansson, Dennis Wei, Tian Gao, Gabriel Brat, David Sontag, Kush R. Varshney
(2020).
Characterization of Overlap in Observational Studies.
Proceedings of the Twenty-Third International Conference on Artificial Intelligence and Statistics (AISTATS).
Anastasia Podosinnikova, Amelia Perry, Alexander Wein, Francis Bach, Alexandre d'Aspremont, David Sontag
(2019).
Overcomplete Independent Component Analysis via SDP.
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics (AISTATS).
Hunter Lang, David Sontag, Aravindan Vijayaraghavan
(2019).
Block Stability for MAP Inference.
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics (AISTATS).
Irene Chen, Fredrik D. Johansson, David Sontag
(2018).
Why Is My Classifier Discriminatory?.
Proceedings of the 32nd International Conference on Neural Information Processing Systems.
Yoon Kim, Sam Wiseman, Andrew C. Miller, David Sontag, Alexander M. Rush
(2018).
Semi-Amortized Variational Autoencoders.
Proceedings of the 35th International Conference on Machine Learning (ICML).
Rahul G. Krishnan, Arjun Khandelwal, Rajesh Ranganath, David Sontag
(2018).
Max-margin learning with the Bayes Factor.
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI).
Omer Gottesman, Fredrik D. Johansson, Joshua Meier, Jack Dent, Donghun Lee, Srivatsan Srinivasan, Linying Zhang, Yi Ding, David Wihl, Xuefeng Peng, Jiayu Yao, Isaac Lage, Christopher Mosch, Li-Wei H. Lehman, Matthieu Komorowski, Aldo Faisal, Leo Anthony Celi, David Sontag, Finale Doshi-Velez
(2018).
Evaluating Reinforcement Learning Algorithms in Observational Health Settings.
Christos Louizos, Uri Shalit, Joris Mooij, David Sontag, Richard S. Zemel, Max Welling
(2017).
Causal Effect Inference with Deep Latent-Variable Models.
Proceedings of the 31st International Conference on Neural Information Processing Systems.
Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush
(2016).
Character-Aware Neural Language Models.
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.
Amir Globerson, Tim Roughgarden, David Sontag, Cafer Yildirim
(2015).
How Hard is Inference for Structured Prediction?.
Proceedings of the 32nd International Conference on Machine Learning (ICML).
Rahul G. Krishnan, Simon Lacoste-Julien, David Sontag
(2015).
Barrier Frank-Wolfe for Marginal Inference.
Proceedings of the 28th International Conference on Neural Information Processing Systems.
Hung Hai Bui, Tuyen N. Huynh, David Sontag
(2014).
Lifted Tree-Reweighted Variational Inference.
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI-14).
David Sontag, Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Susan Dumais, Bodo Billerbeck
(2012).
Probabilistic models for personalizing web search.
Proceedings of the Fifth ACM International Conference on Web Search and Data Mining.
Kevyn Collins-Thompson, Paul N. Bennett, Ryen W. White, Sebastian de la Chica, David Sontag
(2011).
Personalizing web search results by reading level.
Proceedings of the 20th ACM International Conference on Information and Knowledge Management.
Tommi Jaakkola, David Sontag, Amir Globerson, Marina Meila
(2010).
Learning Bayesian Network Structure using LP Relaxations.
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AI-STATS).
David Sontag, Yang Zhang, Amar Phanishayee, David Andersen, David Karger
(2009).
Scaling All-Pairs Overlay Routing.
CoNEXT ‘09: Proceedings of the 5th international conference on Emerging networking experiments and technologies.
Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, Andrey Kolobov
(2005).
BLOG: probabilistic models with unknown objects.
IJCAI'05: Proceedings of the 19th international joint conference on Artificial intelligence.
Brian Milch, Bhaskara Marthi, David Sontag, Stuart Russell, Daniel L. Ong, Andrey Kolobov
(2005).
Approximate Inference for Infinite Contingent Bayesian Networks.
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics.