Benchmarking observational studies with experimental data under right-censoring

Abstract

Drawing causal inferences from observational studies (OS) requires unverifiable validity assumptions; however, one can falsify those assumptions by benchmarking the OS with experimental data from a randomized controlled trial (RCT). A major limitation of existing procedures is not accounting for censoring, despite the abundance of RCTs and OSes that report right-censored time-to-event outcomes. We consider two cases where censoring time (1) is independent of time-to-event and (2) depends on time-to-event the same way in OS and RCT. For the former, we adopt a censoring-doubly-robust signal for the conditional average treatment effect (CATE) to facilitate an equivalence test of CATEs in OS and RCT, which serves as a proxy for testing if the validity assumptions hold. For the latter, we show that the same test can still be used even though unbiased CATE estimation may not be possible. We verify the effectiveness of our censoring-aware tests via semi-synthetic experiments and analyze RCT and OS data from the Women’s Health Initiative study.

Publication
AISTATS 2024
Ilker Demirel
Ilker Demirel
PhD Student

Ilker focuses on developing reliable causal inference methods that can leverage rich and heterogeneous sources of data and can be applied in practice.

Zeshan Hussain
Zeshan Hussain
MD/PhD Student

Harvard/MIT MD/PhD

Michael Oberst
Michael Oberst
PhD Student

Postdoc CMU, Incoming Asst Prof Johns Hopkins

David Sontag
David Sontag
Professor of EECS

My research focuses on advancing machine learning and artificial intelligence, and using these to transform health care.

Related