TabLLM: Few-shot Classification of Tabular Data with Large Language Models
Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, David Sontag
2023
Abstract
We study the application of large language models to zero-shot and few-shot classification of tabular data. We prompt the large language model with a serialization of the tabular data to a natural-language string, together with a short description of the classification problem. In the few-shot setting, we fine-tune the large language model using some labeled examples. We evaluate several serialization methods including templates, table-to-text models, and large language models. Despite its simplicity, we find that this technique outperforms prior deep-learning-based tabular classification methods on several benchmark datasets. In most cases, even zero-shot classification obtains non-trivial performance, illustrating the method’s ability to exploit prior knowledge encoded in large language models. Unlike many deep learning methods for tabular datasets, this approach is also competitive with strong traditional baselines like gradient-boosted trees, especially in the very-few-shot setting.
Publication
Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS)
Research Engineer
Alejandro’s interests include modeling over longitudinal health data and understanding human disease through representation learning on single-cell genomic and transcriptomic data. He is especially interested in leveraging techniques from natural language processing in these areas.
PhD Student
Hunter’s research focuses on understanding and improving the performance of machine learning algorithms in the wild, with particular applications in MAP inference for graphical models, stochastic optimization, and weak supervision.
PhD Student
Monica’s research interests include reasoning over longitudinal clinical notes, building more intelligent electronic health records, studying user-ML interactions in clinical settings, and developing algorithms that can incorporate domain knowledge.
Professor of EECS
My research focuses on advancing machine learning and artificial intelligence, and using these to transform health care.